Article on road-side measurements

The Ethiopian Journal of Water Science and Technology (EJWST) has published an article by me and my students titled “Roadside PM2.5 concentrations measured with low-cost sensors and student science in Arba Minch, Ethiopia“. During April and May 2022, students of Water Supply and Environmental Engineering, year 3, conducted PM2.5 measurements at road-side locations. They did so with the locally assembled sensor system, as part of the course Air and Noise pollution. In this way, seven groups of 5-6 students collected approximately 2,500 hours of PM2.5 data. After the course, I analyzed the data and turned it into a manuscript. Two of the students (Mekdes Dawit and Tewodros Zerihun) provided valuable feedback and became co-authors to the article.

Students conducted measurements at six locations: four stationary and two mobile locations (Figure 1 in the article).

Measurements were conducted at six locations: one at the university campus gate, two at busy squares, one at the bus station, and two inside public transport tuktuks (bajaj). Except for the campus gate, at all locations concentrations exceeded WHO guideline values. Highest concentrations were observed during the morning period at the bus station. Supporting data and data processing code is shared on an OSF repository.

PM2.5 concentrations measured at six locations, in contrast with the WHO guideline (Figure 3 in the article).

Low-cost sensors and student science

The article is a showcase of the application of both locally assembled low-cost sensors and student science. Combined, these methods provided me with a lot of data for very little costs. At the same time it provided my students with practical experience as part of a course. During the course Air and Noise pollution, they got lectures on the course contents. They had to apply this knowledge by selecting a specific research question, constructing measurement plans, installing and operating the instruments, processing the data in Microsoft Excel, and writing a report.